gpu 矩阵运算SEARCH AGGREGATION

首页/精选主题/

gpu 矩阵运算

GPU裸金属

安全稳定,极具性价比的的GPU物理云服务器。

gpu 矩阵运算问答精选

目前哪里可以租用到GPU服务器?

回答:这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。但是,回答量好少。而且最好的回答,竟然是讲amazon aws的,这对国内用户,有多大意义呢?我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!说到GPU租用的选择。ucloud、ucloud、ucloud、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还...

Nino | 2308人阅读

什么是弹性运算

问题描述:关于什么是弹性运算这个问题,大家能帮我解决一下吗?

李涛 | 871人阅读

有什么好用的深度学习gpu云服务器平台?

回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...

enda | 1195人阅读

做运算租用什么服务器

问题描述:关于做运算租用什么服务器这个问题,大家能帮我解决一下吗?

邹立鹏 | 521人阅读

简单易用的数据库哪个比较好?

回答:1.数据量太大,比如上亿,就用oracle,优点上亿数据对Oracle来说轻飘飘的,也不用太多优化配置,缺点安装比较麻烦,上手比较慢。2.数据量较大,比如千万级,用postgresql,它号称对标Oracle,处理千万级数据还是可以的,也是易学易用。3.数据量一般,比如百万级,用mysql,这个级别的数据量mysql处理还是比较快的。4.数据量较小,比如十万以下,sqlite、access都可以。...

yearsj | 1480人阅读

AI与云计算融合是下一个科技趋势吗?

回答:AI人工智能绝对会成为未来最大的变革之一,但是这能否成为一种趋势我持怀疑态度。因为AI技术需要的数据样本和硬件投入都是非常高规格的,只有那些渗透到生活场景中的大型科技公司才有能力去经营这一事业。放一组资料:2014年,Facebook的DeepFace人脸库包含了4030位样本人物的4400万张图,算法方面由多达8层网络、1.2亿训练参数的系统来支持。而谷歌的FaceNet数据库规模更大,容量为来...

chengtao1633 | 700人阅读

gpu 矩阵运算精品文章

  • 亚马逊发布新版MXNet:支持英伟达Volta和稀疏张量

    ...效率方面支持稀疏张量(Sparse Tensor),让用户通过稀疏矩阵训练模型。下面,量子位将分别详述这两个新特性。Tesla V100 加速卡内含 Volta GV100 GPU支持英伟达Volta GPU架构MXNet v0.12增加了对英伟达Volta V100 GPU的支持,让用户训练深度...

    cod7ce 评论0 收藏0
  • 基准评测TensorFlow、Caffe等在三类流行深度神经网络上的表现

    ...务之一,是学习网络的每一层的权重,这可以通过向量或矩阵运算来实现。TensorFlow使用 Eigen作为矩阵加速库,而 Caffe、CNTK、MXNet和Torch采用OpenBLAS、Intel MKL 或 cuBLAS 来加快相关矩阵运算。所有这些工具包都引入了cuDNN,这是一个...

    canopus4u 评论0 收藏0
  • 深度学习初学者必读:张量究竟是什么?

    ...,它们涉及到在一维或二维数组(这里我们称其为向量或矩阵)上进行重复的乘法和加法运算。同时线性代数适用范围异常广泛,从计算机游戏中的图像渲染到核武器设计等许多不同的问题都可以被它解决或近似计算,关键的线...

    binta 评论0 收藏0
  • Tensorflow代码解析(二)

    ...入输出,子图(c)描述了update_W的计算逻辑。首先明确MatMul矩阵运算法则,假设 z=MatMul(x, y),则有dx = MatMul(dz, y),dy = MatMul(x, dz),由此可以推出dW=MatMul(dAdd, x)。在子图(a)中左下侧的节点b就是输入节点x,dAdd由Add_grad计算输出。update_W...

    zhigoo 评论0 收藏0
  • 初学者怎么选择神经网络环境?对比MATLAB、Torch和TensorFlow

    ...函数,以及丰富的、易于获取的文档。其主要设计是处理矩阵的,因此,几乎所有的函数和运算都向量化了,也就是说它们可以管理标量以及向量、矩阵和张量(往往会有)。因此,其能更高效地避免循环(可能的时候),以及...

    yunhao 评论0 收藏0
  • 深度学习的最大瓶颈是带宽问题而非计算

    ...到 RNN 的状态机会整体非常复杂,因为里面会有非常多个矩阵要运转,不仅要支持多路用户,还有里面的非线性函数都有非常大的区别。所以说在整个硬件架构过程做了一个重新设计,能够支持多路用户,也能够支持 RNN,如 LSTM ...

    马永翠 评论0 收藏0
  • Tensorflow 代码解析(三)

    ...。从FDH定义中可以看出MatMulGrad本质上还是MatMul操作。在矩阵求导运算中:MatMulGrad的测试用例core/ops/math_grad_test.cc文件,要调试这个测试用例,可通过如下方式:4.4 Conv2d关于conv2d的python调用部分和C++创建部分可参考MatMul中的描述...

    worldligang 评论0 收藏0

推荐文章

相关产品

<